Kalman Filter

Uri Shaham

March 4, 2024

1 Introduction: a simple case

Suppose we observe samples from a stationary process modeled by $z_{i}=\mu+\epsilon_{i}$, where z_{i} is an observation, μ can be thought of (constant) system state, and ϵ_{i} is a measurement error, which is normally distributed with zero mean and standard deviation σ. We know that a good estimator for μ is $\hat{\mu}:=\bar{z}_{k}:=\frac{1}{k} \sum_{i=1}^{k} z_{i}$. When a new data point arrives, we can (and should) update our estimation. Rather than computing the average all over again, we can just update via

$$
\begin{aligned}
\bar{z}_{k+1} & =\frac{1}{k+1} \sum_{i=1}^{k+1} z_{i} \\
& =\frac{1}{k+1}\left(\sum_{i=1}^{k} z_{i}+z_{k+1}\right) \\
& =\frac{1}{k+1}\left(k \frac{1}{k} \sum_{i=1}^{k} z_{i}+z_{k+1}\right) \\
& =\frac{k}{k+1} \bar{z}_{k}+\frac{1}{k+1} z_{k+1} \\
& =\bar{z}_{k}-\frac{1}{k+1} \bar{z}_{k}+\frac{1}{k+1} z_{k+1} \\
& =\bar{z}_{k}+\frac{1}{k+1}\left(z_{k+1}-\bar{z}_{k}\right),
\end{aligned}
$$

i.e., the updated estimate is the current estimate + a term in the direction of the prediction error, with a small magnitude.

2 The Kalman Filter

2.1 Model

The Kalman filter model is

$$
X_{k}=F_{k} X_{k-1}+B_{k} u_{k}+W_{k}
$$

where:

- $X_{k} \in \mathbb{R}^{d}$ is random variable representing the state of the system at time k (unknown)
- F_{k} is a linear state transition model, applied to the previous state (known)
- u_{k} is optional external control input(known)
- B_{k} is the control-input model (known)
- W_{k} is the process noise, which is a sample from multivariate Gaussian with zero mean and covariance Q_{k}.

In addition, and time k we observe a sample $Z_{k}=H_{k} X_{k}+v_{k}$, where:

- H_{k} is the state-observation model (known)
- W_{k} is measurement noise, drawn from a multivariate Gaussian with zero mean and covariance R_{k}.

2.2 Example

A truck drives along a straight road, starting at position 0 . Time indices k refer to Δt intervals. We want to keep track of the truck position y and velocity \dot{y}, i.e.,

$$
x_{k}=\binom{y_{t}}{\dot{y}_{t}} .
$$

We consider constant F, Q, R, H (hence time indices are omitted, and $B=0$, as no external inputs are involved. We set the matrices as follows. We assume that at the k 'th time interval there is a constant acceleration given by a_{k}, which is normally distributed with zero mean and σ_{a} standard deviation. Then applying Newton's laws, we can write

$$
x_{k}=F x_{k-1}+a_{k} G
$$

where

$$
F=\left(\begin{array}{cc}
1 & \Delta t \\
0 & 1,
\end{array}\right)
$$

and

$$
G=\binom{\frac{1}{2}(\Delta t)^{2}}{\Delta t}
$$

This means that we can write

$$
x_{k}=F x_{k-1}+W_{k},
$$

with

$$
w_{k} \sim G G^{T} \cdot \mathcal{N}\left(0, \sigma_{a}^{2}\right)
$$

At time k we measure the position of the truck

$$
z_{k}=H x_{k}+v_{k},
$$

where $H=(1,0)^{T}$ and $v_{k} \sim \mathcal{N}(0, \sigma)$ is measurement noise.

2.3 Prediction and update

Let $Z_{k}=\left(z_{1}, \ldots z_{k}\right)$ denote the first k observations collectively. At time $k-1$ we want to predict the next system state based on Z_{k-1}, denoted as $x_{k \mid k-1}:=\mathbb{E}\left[X_{k} \mid Z_{k-1}\right]$. In addition, once the k 'th observation z_{k} arrives, we update our model to $x_{k \mid k}:=\mathbb{E}\left[X_{k} \mid Z_{k}\right]$. We also model the covariance matrices corresponding to the random variables $x_{k} \mid Z_{k-1}$ and $x_{k} \mid Z_{k}$ (whose means are $\hat{x}_{k \mid k-1}$ and $\hat{x}_{k \mid k}$, respectively) by

$$
P_{k \mid k-1}=\mathbb{E}\left[\left(x_{k}-\hat{x}_{k \mid k-1}\right)\left(x_{k}-\hat{x}_{k \mid k-1}\right)^{T} \mid Z_{k}\right]
$$

and

$$
P_{k \mid k}=\mathbb{E}\left[\left(x_{k}-\hat{x}_{k \mid k}\right)\left(x_{k}-\hat{x}_{k \mid k}\right)^{T} \mid Z_{k}\right] .
$$

2.4 Derivation

Recall from the previous lesson that if $\binom{X}{Z}$ is a multivariate Gaussian, then $X \mid Z$ is also a multivariate Gaussian with mean $\mu_{X}+\Sigma_{X Z} \Sigma_{Z Z}^{-1}\left(Z-\mu_{Z}\right)$ and covariance $\Sigma_{X X}-\Sigma_{X Z} \Sigma_{Z Z}^{-1} \Sigma_{Z X}$. Since all noises in our case are Gaussian, and all random variables are linear combinations of Gaussian random variables, it follows that $X_{k} \mid Z_{k-1} \sim \mathcal{N}\left(\hat{x}_{k \mid k-1}, P_{k \mid k-1}\right)$ and $X_{k} \mid Z_{k} \sim \mathcal{N}\left(\hat{x}_{k \mid k}, P_{k \mid k}\right)$.

Suppose that at some point, we have $\hat{x}_{k \mid k-1}$ and $P_{k \mid k-1}$. In the above example, suppose we know that at time 0 both the position and the velocity are both zero i.e.,

$$
\hat{x}_{k \mid k-1}=\binom{0}{0}
$$

and

$$
P_{k \mid k-1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

The algorithm works in two alternating steps:
Prediction: Since $X_{k}=F_{k} X_{k-1}+B_{k} u_{k}+W_{k}$, and since given Z_{k-1}, X_{k} and W_{k} are independent, we have

$$
\begin{aligned}
& \hat{x}_{k \mid k-1}=\mathbb{E}\left[X_{k} \mid Z_{k-1}\right]=F_{k} \mathbb{E}\left[X_{k-1} \mid Z_{k-1}\right]=F_{k} \hat{x}_{k-1 \mid k-1}+B_{k} u_{k} \\
& P_{k \mid k-1}=\operatorname{Cov}\left(X_{k} \mid Z_{k-1}\right)=F_{k} P_{k-1 \mid k-1} F_{k}^{T}+Q_{k}
\end{aligned}
$$

Update: Since $Z_{k}=H_{k} X_{k}+V_{k}$,

$$
\left[\begin{array}{l}
X_{k} \\
Z_{k}
\end{array}\right] \left\lvert\, Z_{k-1} \sim \mathcal{N}\left(\left[\begin{array}{l}
\hat{x}_{k \mid k-1} \\
H_{k} \hat{x}_{k \mid k-1}
\end{array}\right],\left[\begin{array}{ll}
P_{k \mid k-1} & P_{k \mid k-1} H_{k}^{T} \\
H_{k} P_{k \mid k-1} & H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}
\end{array}\right]\right) .\right.
$$

Since $\left[\begin{array}{c}X_{k} \\ Z_{k}\end{array}\right]$ is Gaussian, conditioning on $\left(Z_{k-1}, Z_{k}\right)$ (that is, on $\left.Z_{k}\right)$, we have

$$
\begin{aligned}
\hat{x}_{k \mid k} & =\mathbb{E}\left[X_{k} \mid Z_{k}\right] \\
& =\mathbb{E}\left[X_{k} \mid Z_{k-1}\right]+P_{k \mid k-1} H_{k}^{T}\left(H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}\right)^{-1}\left(Z_{k}-H_{k} \hat{x}_{k \mid k-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{k \mid k} & =\operatorname{Cov}\left[X_{k} \mid Z_{k}\right] \\
& =P_{k \mid k-1}-P_{k \mid k-1} H_{k}^{T}\left(H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}\right)^{-1} H_{k} P_{k \mid k-1}
\end{aligned}
$$

Remark 2.1. The factor $Z_{k}-H_{k} \hat{x}_{k \mid k-1}=z_{k}-\mathbb{E}\left[Z_{k} \mid Z k-1\right]$ is called innovation, whose covariance is $H_{k} P_{k \mid k-1} H_{k}^{T}+R k$.

Remark 2.2. The factor $P_{k \mid k-1} H_{k}^{T}\left(H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}\right)^{-1}$ is called the Kalman gain, and reflects the importance of the innovation.

